
Bayesian Inference of Model Parameters Complexity Reduction using Surrogate Reduction of Observations Conclusions and outlooks

Complexity Reduction Methods for Bayesian Inference of
Model Parameters

Olivier Le Maître1
(with Omar Knio KAUST)

1Centre de Mathématiques Appliquées, CNRS
Ecole Polytechnique, Palaiseau, France

https://perso.limsi.fr/olm/
olivier.le-maitre@polytechnique.edu

Ecole d’été Mécanique Théorique, Quiberon

https://perso.limsi.fr/olm/
olivier.le-maitre@polytechnique.edu


Bayesian Inference of Model Parameters Complexity Reduction using Surrogate Reduction of Observations Conclusions and outlooks

Table of contents

1 Bayesian Inference of Model Parameters

2 Complexity Reduction using Surrogate

3 Reduction of Observations

4 Conclusions and outlooks



Bayesian Inference of Model Parameters Complexity Reduction using Surrogate Reduction of Observations Conclusions and outlooks

Bayesian Inference

Bayesian inference

Parametric uncertainty

incomplete knowledge of some model parameters: qqq ∼ p(qqq)
uncertain model prediction M(qqq)
uncertainty reduction strategies

Bayes formula

We want to update / infer a finite set of parameters qqq ∈ Rq , using
a set O .= {yi ∈ R, i = 1, . . . ,M} of observations,
the model prediction of the observations: U(qqq) ∈ RM

Bayesian rule to update our knowledge on qqq:

ppost(qqq|O) ∝ L(O|qqq)p(qqq),

with
L(O|qqq) is the likelihood of the measurements,
p(qqq) is the parameters’ prior,
ppost(qqq|O) is the posterior.
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Bayesian Inference

Bayesian inference

Likelihood function (Gaussian example)

Model for the measurements error (noise):

Yi = Ui (qqq) + εi , εi = N(0, σ2i ),

The likelihood becomes:

L(O|qqq) .=
M∏

i=1

exp
[
−|yi − Ui (qqq)|2

2σ2i

]
.

Posterior sampled, for instance using Markov Chain Monte Carlo (MCMC).
Note: in reality needs hyper-parameters (i.e. noise variance).

Issues:

Rely heavily on multiple evaluations of the model qqq 7→ UUU(qqq) .= (U1 · · ·UM)(qqq):
use of surrogate models

Assumes the measurements to be informative: more is not always better, in
particular in the absence of complete information regarding protocols
Calls for the selection of robust and informative observations
Model error?
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Bayesian Inference

Example

Suppose that we have the following
polynomial model:

“True” polynomial

u(x) = 10− 2x + 7.5x2 − 3.3x3 − 3.2x4

observed at at N coordinates {xi}N
i=1 ∈ (0, 1)
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We perturb the observations with a Gaussian
noise with mean zero and variance 0.01, i.e.
N (0, 0.01).
This yields a set of noisy observations,
({xi , yi}N

i=1).
For this example we have N = 30. (We will
discuss the effect of the number of
observations)
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Bayesian Inference

Example

Objective: given the data O = {yi}N
i=1, can we recover the original polynomial?

We need to define a model (i.e. the hypothesis) to describe the data.
Our model is a polynomial of certain order p:

M(x |qqq) =
p∑

k=0

qkxk (1)

It follows that our set of parameters is:

qqq = {q0, q1, q2, . . . , qp} (2)

Bayes’ theorem

ppost({qk}p
k=0|{yi}N

i=1) ∝ L({yi}N
i=1|{qk}p

k=0) p({qk}p
k=0)

We now need to define the likelihood and priors.
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Bayesian Inference

Likelihood

To formulate the likelihood we assume the
following relationship:

yi = Ui (qqq) + εi , Ui (qqq) = M(xi |qqq)

where εi is a random variable which represents
the discrepancy between the i-th observation, yi ,
and the model evaluated at the i-th coordinate,
M(xi |qqq).
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M(x)

Assuming N independent realizations and εi ∼ N(0, σ2), i = 1, ...,N, the
likelihood can be written as

L ≡ p({yi}N
i=1|{qk}p

k=0) =
N∏

i=1

1√
2πσ2

exp
(

(yi − Ui (qqq))2
2σ2

)

Objective: jointly infer σ2 and {qk}p
k=0.
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Bayesian Inference

Prior selection

The choice of a prior should be based, when possible, on some a priori knowledge
about the parameters.

We have p + 2 unknowns, i.e. the (p + 1) coefficients {pk}p
k=0 and the variance

σ2.

For each pk , since we have limited information and for the purpose of this
exercise, we choose a uniform distribution

p(qk ) =
{

1
400 for − 200 < qk ≤ 200,
0 otherwise ,

In theory, these bounds can be made arbitrarily large.

We know that σ2 cannot be negative: this information is what we defined as a
priori knowledge about a parameter. We assume a Jeffreys prior:

P(σ2) =
{

1
σ2 for σ2 > 0,
0 otherwise.
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Bayesian Inference

Posterior

Final form of the joint posterior

ppost({qk}p
k=0, σ

2|{yi}N
i=1) ∝

[
N∏

i=1

1√
2πσ2

exp
(

(yi − Ui (qqq))2
2σ2

)]
P(σ2)

p∏

j=0

p(qj )

The problem now reduces to simulate (sample) this posterior.
We are dealing with a (p + 2)-dimensional probability distribution.
For high-dimensional cases, which are also the only interesting ones, use Markov
chain Monte Carlo (MCMC) methods.
MCMC: class of algorithms suitable to sample high-dimensional probability
distributions.
Must pay attention to mixing ability, convergence...
Important feature: the quality of the sample improves as a function of the
number of steps.
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Bayesian Inference

Markov Chain Monte Carlo
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Bayesian Inference

Back to polynomial inference example
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Elementary Examples

Zeroth-order model

Suppose that we infer a zeroth-order polynomial:

M(x |qqq) = q0

We know that this is far from the true model defined before, which was a
fourth-order polynomial.

Two-dimensional joint posterior

ppost(q0, σ2|{yi}N
i=1) ∝

[
N∏

i=1

1√
2πσ2

exp
(

(yi − q0)2
2σ2

)]
P(σ2) p(q0)
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Elementary Examples

Posterior distributions

Chain samples can be used to estimate the marginalized posteriors of the
parameters via KDE.
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This approach only allows us to infer the mean
value.



Bayesian Inference of Model Parameters Complexity Reduction using Surrogate Reduction of Observations Conclusions and outlooks

Elementary Examples

Inference for higher-degree polynomial
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Elementary Examples

fourth-order model

Suppose that we infer a fourth-order polynomial:

M(x |qqq) = q0 + q1x + q2x2 + q3x3 + q4x4

Six-dimensional joint posterior

ppost({qk}4k=0, σ
2|{yi}N

i=1) ∝

[
N∏

i=1

1√
2πσ2

exp
(

(yi − Ui (qqq))2
2σ2

)]
P(σ2)

p∏

j=0

p(qj )
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Elementary Examples

Markov Chains
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Elementary Examples

Closing remarks

Results based on the MAP estimates of the coefficients.
Note: increasing the order of the polynomial yields a lower value of the variance
because the model is getting closer to the true curve.
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Surrogate model for Bayesian Inference

Standard approach

Inference of qqq ∈ Rd from O .= {yi ∈ R, i = 1, . . . ,M} (measurements)
Bayes’ formula:

ppost(qqq|O) ∝ L(O|qqq)p(qqq),

with p(qqq) (prior), L(O|qqq) (likelihood) and ppost(qqq|O) (posterior)
Model for the measurement errors:

yi = Ui (qqq) + εi , εi = N(0, σ2i ),

Ui (qqq) is the model prediction of the i-th measurement
Likelihood becomes:

L(O|qqq) .=
M∏

i=1

exp
[
−|yi − Ui (qqq)|2

2σ2i

]
.

Posterior sampled, for instance using Markov Chain Monte Carlo (MCMC), rely
heavily on multiple evaluations of

qqq 7→ UUU(qqq) .= (U1 · · ·UM)(qqq)
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Surrogate model for Bayesian Inference

Surrogate based posterior

Substitute costly model UUU with a surrogate ÛUU with inexpensive evaluations.
The surrogate-based posterior becomes

p̂post(qqq|O) ∝ L̂(O|qqq)p(qqq), L̂(O|qqq) .=
M∏

i=1

exp
[
−|yi − Ûi (qqq)|2

2σ2i

]
.

Error estimate [Marzouk, Xiu, Najm, ...]

KL(ppost|p̂post) .=
˙

log ppost(qqq|O)
p̂post(qqq|O)

ppost(qqq|O)dqqq ≤ C(O)

(
M∑

i=1

‖Ui − Ûi‖2L2(p)

)1/2

,

where

‖u‖2L2(p)
.=
˙

|u(qqq)|2p(qqq)dqqq

Motivate for surrogate minimizing ‖Ui − Ûi‖L2(p).
PC surrogates (off-line construction) [Marzouk, Najm]

Ui (qqq) ≈ Ûi (qqq) .=
P∑

α=1

[Ui ]αΨα(qqq),

Supported by the possibly high convergence rate of the approximation.
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Surrogate model for Bayesian Inference

Surrogate based posterior

Substitute costly model UUU with a surrogate ÛUU with inexpensive evaluations.
The surrogate-based posterior becomes

p̂post(qqq|O) ∝ L̂(O|qqq)p(qqq), L̂(O|qqq) .=
M∏

i=1

exp
[
−|yi − Ûi (qqq)|2

2σ2i

]
.

Error estimate [Marzouk, Xiu, Najm, ...]

KL(ppost|p̂post) .=
˙

log ppost(qqq|O)
p̂post(qqq|O)

ppost(qqq|O)dqqq ≤ C(O)

(
M∑

i=1

‖Ui − Ûi‖2L2(p)

)1/2

,

Constant C(O) can be large if the observations are very informative:

Eppost

{
|Ui − Ûi |2

}
=
˙

|Ui (qqq)− Ûi (qqq)|2ppost(qqq|O)dqqq.

But the posterior is unknown!
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Iterative surrogate construction

Iterative surrogate construction
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Iterative surrogate construction

Iterative approach

Basic idea:
a sequence of polynomial surrogates ÛUU(k)(qqq) incorporating progressively new
observations of UUU
take new observations of the model to improve the surrogate error (in the
posterior norm)

Denote D = {(qqqj ,UUU j , ρj ), j = 1, . . . , n} the set of collected model observations:
qqqj observation point
UUU j = UUU(qj ) full model evaluation
ρj > 0 trust index
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Iterative surrogate construction

Iterative approach

Basic idea:
a sequence of polynomial surrogates ÛUU(k)(qqq) incorporating progressively new
observations of UUU
take new observations of the model to improve the surrogate error (in the
posterior norm)

Model construction:
select a subset I(k) of model observations indexes
find the polynomial approximation

UUU(qqq) ≈ UUU(k)(qqq) =
P∑

α=1

[UUU](k)
α Ψα(ηηη(k)(qqq)),

solving a regularized regression problem of type

uuu = arg min
ννν∈RP

∑

j∈I

ρi

∣∣∣∣∣U
j −

P∑

α=0

Ψα(qqqj )vα

∣∣∣∣∣

2

+ λ

p∑

α=0

|vα|.
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Iterative surrogate construction

Iterative approach

Basic idea:
a sequence of polynomial surrogates ÛUU(k)(qqq) incorporating progressively new
observations of UUU
take new observations of the model to improve the surrogate error (in the
posterior norm)

Resampling: (completing the model observations set)

p̂(k)
post(qqq|O) ∝ exp




M∑

i=1

−

∣∣∣yi − Û(k)
i (qqq)

∣∣∣
2

2σ2i


 p(qqq).

Draw several independent samples qqqj form p̂(k)
post

Compute model prediction UUU j = UUU(qqqj )
Define the trust index of the new observation as

(∆j )2 .=
M∑

i=1

|U j
i − Û(k)

i (qqqj )|2
2σ2i

, ρj .= 1
max(εt ,∆j )

.
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Iterative surrogate construction

General Iterative Algorithm

ppost(qqq|O). On the contrary, when a �j is large, it indicates that the sample qqqj is not a reliable observation
point as it is drawn from an inaccurate posterior. From the discrepancy measures, we can derive the weights
and complete the observation triplets (qqqj ,UUU j , ⇢j) of the new observations. We define

⇢j .
=

1

max(✏t,�j)
, (19)

where ✏t > 0 is a small threshold constant that should be set to an order of magnitude close to the expected
surrogate error over the posterior. In the surrogate construction, the role of the weights is to bring (relatively)
an higher importance to observations which were drawn using an accurate surrogate and, on the contrary, a
lower importance to unreliable observations.

3.3 Iterative Algorithm

Having discuss its two main ingredients, we now discuss their assembly to form the proposed method. First
the algorithm is initialize generating D from a initial sample set of n0 points qqqj drawn from the prior density
p(qqq). The number of elements in D is chosen to be proportional to the polynomial basis dimension P + 1; in
practice, we set n0 = 2⇥ (P + 1). Since the initial elements are not drawn using an approximate posterior,
the associated weights ⇢j can not be defined using (19), and we simply set ⇢j to a su�ciently large value

compared to 1/✏t. The corresponding initial surrogate ÛUU
(0)

is determined from the whole observations set
D, that is using I(0) = {1, . . . , n0}. This initialization stage corresponds to lines 1 to 6 in Algorithm 1. The
initialization is followed by the iterations on the construction, alternating between the completion of D (lines
8-12) and the surrogate update (line 14).

ALGORITHM 1: Iterative Procedure for the Construction of the Posterior Fitted Surrogate.

Require: Initial number of observations n0, number of new observations at each step nadd, measurements
set O, maximal number of model evaluations nmax

1: Initialization:
2: n = 1, D = ; . Initialize the observations set
3: for j = 1, . . . n0 do . Generate the initial observations
4: Draw qqqn from p(qqq), D  D [ {(qqqn,UUU(qqqn), ⇢0)}, n n + 1
5: end for

6: k = 0, construct ÛUU
(0)

with I(0) = {1, . . . , n} . Construct initial surrogate
7: while n < nmax do
8: for j = 1, . . . nadd do

9: Draw qqqn from p̂
(k)
post(qqq|O) . Sample surrogate-based posterior

10: Compute UUU(qqqn) and observation weight ⇢n from (19) . Set observation
11: D  D [ {(qqqn,UUU(qqqn), ⇢0)}, n n + 1 . Update observation set
12: end for
13: k  k + 1

14: Define I(k), construct ÛUU
(k)

. Specify observations to use and compute surrogate
15: end while

16: Return ÛUU
(k)

. Return final surrogate

The parameters of the algorithm are

4 Numerical Tests

4.1 Analytic function

We will put here the numerical tests for the analytic function. Using analytic functions allows for direct
sampling of the posterior, which is useful to illustrate the overall behavior of the iterative scheme and provide

5
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Simple one-dimensional test problem
Problem settings

X q 2 Rd=1 and non-polynomial model: U(q) = exp [tanh(q/2)]

X standard Gaussian prior: q ⇠ p(q) = exp [�q2/2]/
p

2⇡

X single observation O = 2.6, likelihood maximized for q = 3.8
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X for small noise level, � ⌧ 1, prior and posterior are very distant

X high pol. order No required to globally approximate U(q) over few std range
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Simple one-dimensional test problem
E↵ect of measurement noise level � (No = 5; sampling |D(k)|k=1...10 = 10)
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Examples

Elementary 1D problem
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Numerical
method

Bayesian Inference

Surrogate model

Applications

Test functions

Hemodynamics

Conclusion

Simple one-dimensional test problem
E↵ect of polynomial degree No (noise level � = 0.05; sampling |D(k)|k=1...10 = 2No)
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Examples

(1D) Elliptic problem

∂ (κ(x)∂u(x)) = −g , ∀x ∈]0, 1[

Log-normal random field, exponential type covariance
Retain the first 15 modes: qqq ∈ R15

log κ(x , ω) =
l=15∑

l=1

√
λlφl (x)ql (ω), qqq ∼ N(0, I).
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Figure 1: KL modes.

D with 2 ⇥ NPC(No
(0)) samples for qqqj drawn randomly from its prior. The initial surrogate U (0) is then

constructed for all the data in D. Then at each iteration k, we complete the data set with nadd = NPC(No
(k))

new samples drawn from the current surrogate posterior p̂
(k)
ppost . For the update of the model, we attempt to

use asymptotically the last half of the data set and to increase the PC order by one if possible. Specifically,
we use

No
k+1 =

(
No

k + 1 if NPC(No
k + 1)  3|D|/2,

No
(k) otherwise.

Having set the order of the updated surrogate UUU (k+1), it is determined solving the weighted-least-square
problem with I = {n � max(n/2, 3NPC(No

(k+1)), . . . , n}. This selection of the PC order ensures that the
regression problems considers at least 3 times as much data than PC coe�cients to be computed (for each
component of the model prediction vector). This ratio could be made higher, if needed, to improve the

stability of the regression in particular if No
(k) becomes large. Finally, the iterations are stopped when the

total number of exact model solves performed (i.e. n = |D|) exceeds a prescribed value, Nmax.

For the purpose of e�ciency assessment, the iterative surrogate model ÛUU
(k)

and the corresponding surro-

gate posterior p̂
(k)
ppost are compared with a the corresponding objects that would result from a global construc-

tion. To this end, we generate a sample set of values for qqq, drawn from it prior having the same size as D
when the iterations terminate. We select the maximum polynomial order NoG such that NPC(NoG)  3|D|
and construct the ”global” surrogate ÛUU

G
solving the (unweighted) regression problem. In other words, ÛUU

G

is the surrogate that would be obtained for equivalent complexity (same number of exact model evaluation)
without attempting to adapt to the posterior, but sampling from the prior. In order to contrast the two

approaches, we estimate the L2-errors ✏(k) and ✏G of the iterative surrogate ÛUU
(k)

and global surrogate ÛUU
G

respectively, with respect to the exact model and the posterior measure. Since the later is unknown, we use
in the surrogate posterior measure p̂post as a substitute of ppost (we will show that p̂post is closer to the exact
posterior than the one constructed on the global surrogate) and estimate the two normalized error norms
through

(✏(k),G)2 =
Ep̂post

n
kUUU(qqq)�UUU (k),G(qqq)k2

o

Ep̂post {kUUU(qqq)k2} ⇡
PM✏

j=1 kUUU(qqqj)�UUU (k)(qqqj)k2
PM✏

j=1 kUUU(qqqj)k2
, (21)

using a set of M✏ independent samples qqqj ⇠ p̂
(k)
post(qqq|O). In the results presented hereafter, we use M✏ = 1, 000

for the estimation of the error norms.
In addition to measuring error norms, we shall contrast the resulting posteriors based on the two sur-

rogates. Again, the exact posterior being unknown and the surrogate posteriors being defined up to a
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normalization constant, we shall report the (unnormalized) exact log-posterior versus the (unnormalized)
surrogate log-posteriors, for samples qqq drawn from the respective surrogate posterior. The higher the agree-
ment between the surrogate and exact log-posteriors the more the sampled values align on the x = y line.

4.3.1 Reference case

We start by considering measurements generated for qqq = 0 and a measurement noise � = 0.01. This
situation corresponds to a MAP estimate that has high prior probability, while the noise level makes the
measurements moderately informative. Thus, we expect the iterative method to provide only a moderate
improvement of the constructed surrogate quality over the the support of ppost, compared to the global
surrogate construction. In Figure 2, we illustrate the convergence of the iterative surrogate construction
for Nmax = 3000 and No

(0) = 1, reporting the evolution of the trust-index value averaged over the new
data completing D at each iteration. The results are reported as a function of the cumulated number of
exact model solves; also reported is the evolution of the surrogate model order No

(k). We see from the plot
that the averaged trust-index globally increases, denoting the progressive improvement of the surrogate with
respect to the successive sampled points added to D, with sharp increases each time the surrogate order
in augmented. Eventually the averaged trust-index stagnates to ⇠ 800 a value consistent with the present
choice of ✏t = 10�3. Note that in the present case, the results are not much sensitive to the selection of ✏t
(not shown). Using a di↵erent Nmax leads to essentially similar evolutions, prolongating the construction to
higher order surrogates or stopping at intermediate stage.
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Figure 2: Evolution of the averaged trust-index for qqq = 0, � = 0.01 and using No
(0) = 1, Nmax = 3000 as

numerical parameters. Also shown is the evolution of the polynomial order of the successive surrogates (left
axis).

In Table 1 we report the surrogate and global normalized error norms, as defined in (21), for the same
parameters as previously, but varying the stopping criteria Nmax. Also reported are the actual dimension of
D at end of the iterations, the polynomial orders of the surrogates and the corresponding basis dimensions
NPC. We first observe that the iterative surrogates consistently do better than the global surrogate in terms
of the error measures, with an error ratio ✏(k)/✏G as low as 0.06 for Nmax = 1000. However, for the present
settings the ratio of errors does not monotonically decreases with Nmax but instead level o↵ and eventually
seems to increase. This trend can be explained by observing that the final iterative surrogate construction
uses only half the (weighted) data in D, when the global surrogate uses twice as more observations of the
exact model. Thus, if the two surrogates have the same order No, the construction of the iterative one can be
more sensitive to sampling variability and stability issues inherent to the regression approach, particularly
in the case of large basis. In fact, the higher ✏(k) for Nmax = 3000 than for Nmax = 2500, when the two
surrogates UUU (k) have the same polynomial order, may indicate an high sensitivity of the regression problems
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with respect to the sample set used (note however that the error level remains quite low). Then, selecting
the polynomial order as high as possible while ensuring at least 3 times more observations than the basis
dimension could be not enough as No increases (see [?]).

Iterative Surrogate Global Surrogate Error ratio

Nmax (|D|) ✏(k) No
(k) NPC ✏G No

G NPC ✏(k)/✏G

500 (503) 3.1 10�3 2 16 9.4 10�3 4 166 0.33
1000 (1088) 3.8 10�4 4 166 6.8 10�3 4 166 0.06
2000 (2084) 3.7 10�4 4 166 3.2 10�3 6 406 0.11
2500 (2807) 2.9 10�4 6 406 2.7 10�3 6 406 0.11
3000 (3213) 4.1 10�4 6 406 2.5 10�3 6 406 0.16

Table 1: Using No
(0) = 1, and di↵erent Nmax as indicated. � = 0.01.

To complete this first series of experiments, we compare in Figure 3 the log-posteriors of the two surrogates
for di↵erent values of Nmax. The plots depict the values of the surrogate-based log-posteriors versus the exact
log-posterior at 1000 sample points drawn from the respective surrogate posteriors. The figure shows that,
consistently with the analysis of the error norms, the iterative surrogates exhibit log-posteriors that better
agree with the exact log-posterior (sample points are less spread around the x = y line) compared to the
global surrogate log-posteriors. In addition, when increasing Nmax, the log-posterior values tend to better
agree with the exact log-posterior, demonstrating the convergence of the iterative approach (and of the global
surrogate model too).
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Figure 3: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from p̂
(k)
post

(Iterative method) and p̂G
post (Global method) respectively. Surrogates are constructed with di↵erent values

of Nmax, as indicated, and for � = 0, .01, qqq = 0, No
(0) = 1.

4.3.2 Varying the noise level

As mentioned above, the problem considered previously is not too challenging for the global approach, as
the maximum likelihood solution coincides (on average) with the maximum a priori of qqq and for � = 0.01 the
posterior does not dramatically concentrate (measurements are moderately informative). In this subsection,
we show that the iterative method performs better and better compared to the global approach when the
measurements are more and more informative. To this end, we contrast in Table ?? the normalized error
norms for the case of � = 0.05 (weakly informative), � = 0.01 (moderately informative) and � = 0.001

(highly informative). We kept in all cases qqq = 0, No
(0)=1 and use the stopping criterion Nmax = 1500. The

sequence of iterative models size is then the same for all cases, and the final model UUU (k) has No = 4, while
the global one has No = 6. In fact, the global model should be the same in all cases, except for it relies on
random samples drawn from the prior. The numbers shown in Table 2 show a fast decay of ✏(k) when � is
decreased, highlighting the local improvement of the iterative surrogate model over the the posterior when
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with respect to the sample set used (note however that the error level remains quite low). Then, selecting
the polynomial order as high as possible while ensuring at least 3 times more observations than the basis
dimension could be not enough as No increases (see [?]).
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G NPC ✏(k)/✏G

500 (503) 3.1 10�3 2 16 9.4 10�3 4 166 0.33
1000 (1088) 3.8 10�4 4 166 6.8 10�3 4 166 0.06
2000 (2084) 3.7 10�4 4 166 3.2 10�3 6 406 0.11
2500 (2807) 2.9 10�4 6 406 2.7 10�3 6 406 0.11
3000 (3213) 4.1 10�4 6 406 2.5 10�3 6 406 0.16

Table 1: Using No
(0) = 1, and di↵erent Nmax as indicated. � = 0.01.

To complete this first series of experiments, we compare in Figure 3 the log-posteriors of the two surrogates
for di↵erent values of Nmax. The plots depict the values of the surrogate-based log-posteriors versus the exact
log-posterior at 1000 sample points drawn from the respective surrogate posteriors. The figure shows that,
consistently with the analysis of the error norms, the iterative surrogates exhibit log-posteriors that better
agree with the exact log-posterior (sample points are less spread around the x = y line) compared to the
global surrogate log-posteriors. In addition, when increasing Nmax, the log-posterior values tend to better
agree with the exact log-posterior, demonstrating the convergence of the iterative approach (and of the global
surrogate model too).
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Figure 3: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from p̂
(k)
post

(Iterative method) and p̂G
post (Global method) respectively. Surrogates are constructed with di↵erent values

of Nmax, as indicated, and for � = 0, .01, qqq = 0, No
(0) = 1.

4.3.2 Varying the noise level

As mentioned above, the problem considered previously is not too challenging for the global approach, as
the maximum likelihood solution coincides (on average) with the maximum a priori of qqq and for � = 0.01 the
posterior does not dramatically concentrate (measurements are moderately informative). In this subsection,
we show that the iterative method performs better and better compared to the global approach when the
measurements are more and more informative. To this end, we contrast in Table ?? the normalized error
norms for the case of � = 0.05 (weakly informative), � = 0.01 (moderately informative) and � = 0.001

(highly informative). We kept in all cases qqq = 0, No
(0)=1 and use the stopping criterion Nmax = 1500. The

sequence of iterative models size is then the same for all cases, and the final model UUU (k) has No = 4, while
the global one has No = 6. In fact, the global model should be the same in all cases, except for it relies on
random samples drawn from the prior. The numbers shown in Table 2 show a fast decay of ✏(k) when � is
decreased, highlighting the local improvement of the iterative surrogate model over the the posterior when
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Figure 5: Evolutions of the averaged trust-index for qqq = 0, Nmax = 1500, No
(0) = 1 and di↵erent values for �

as indicated. Also shown are the evolutions of the polynomial order of the successive surrogates (left axis).

resulting normalized error for the the two surrogates are reported in Table ??; again, the improvement in
the posterior weighted error for the iterative surrogate is clearly evidenced. It further indicates that, as one
would have anticipated, the improvement brought by building the surrogate using samples from the posterior
increases as the support of the posterior goes away from the high density region of the prior (that is when
� increases).

� = 0.5 � = 1.0 � = 2.0 No NPC

✏(k) 2.7 10�5 7.5 10�6 3.1 10�6 4 166
✏G 2.1 10�3 7.6 10�3 2.8 10�2 6 406

✏(k)/✏G 1.3 10�2 9.9 10�4 1.1 10�4 - -

Table 3: Using No
(0) = 2, Nmax = 1500, � = 0.001.

To better appreciate these improvements, Figure 6 compares the fit of the surrogate log-posteriors with
the log-posterior for the exact model. We observe that while for the iterative surrogate the sampled values
of its log-posterior remains in excellent agreement with the corresponding exact log-posterior values, for all
tested �, the deviations for the global surrogate becomes more and more pronounced when � increases. In
fact, not only the spread increases for the global surrogate, but a constant shift with respect to the x = y
line emerges denoting that the global surrogate is significantly o↵ the exact model. The impact of the global
surrogate model misfit can be further appreciated in Figure 7 where compared are the joint marginal densities
for the first two coordinates q1 and q2, based on the two surrogate posteriors and the three values of �.
Shown are iso-contours of the joint distributions estimated by means of standard kernel density method using

the 1000 sampled values from p̂
(k)
post (left plot) and p̂G

post (right plot). For the case with �, the iso-contours
(q1 and q2 around -2) for the iterative and global surrogates do not even overlap, denoting a large error in
the posterior based on the global surrogate, since results shown in Figure 6 demonstrates the validity of the
posterior approximation for the iterative method.
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Figure 5: Evolutions of the averaged trust-index for qqq = 0, Nmax = 1500, No
(0) = 1 and di↵erent values for �

as indicated. Also shown are the evolutions of the polynomial order of the successive surrogates (left axis).

resulting normalized error for the the two surrogates are reported in Table ??; again, the improvement in
the posterior weighted error for the iterative surrogate is clearly evidenced. It further indicates that, as one
would have anticipated, the improvement brought by building the surrogate using samples from the posterior
increases as the support of the posterior goes away from the high density region of the prior (that is when
� increases).
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Table 3: Using No
(0) = 2, Nmax = 1500, � = 0.001.

To better appreciate these improvements, Figure 6 compares the fit of the surrogate log-posteriors with
the log-posterior for the exact model. We observe that while for the iterative surrogate the sampled values
of its log-posterior remains in excellent agreement with the corresponding exact log-posterior values, for all
tested �, the deviations for the global surrogate becomes more and more pronounced when � increases. In
fact, not only the spread increases for the global surrogate, but a constant shift with respect to the x = y
line emerges denoting that the global surrogate is significantly o↵ the exact model. The impact of the global
surrogate model misfit can be further appreciated in Figure 7 where compared are the joint marginal densities
for the first two coordinates q1 and q2, based on the two surrogate posteriors and the three values of �.
Shown are iso-contours of the joint distributions estimated by means of standard kernel density method using

the 1000 sampled values from p̂
(k)
post (left plot) and p̂G

post (right plot). For the case with �, the iso-contours
(q1 and q2 around -2) for the iterative and global surrogates do not even overlap, denoting a large error in
the posterior based on the global surrogate, since results shown in Figure 6 demonstrates the validity of the
posterior approximation for the iterative method.
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Figure 6: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from p̂
(k)
post

(Iterative method) and p̂G
post (Global method) respectively. Case of construction with Nmax = 1500, for

qqq = 0, No
(0) = 1 and di↵erent � as indicated.
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Figure 7: Comparison of the surrogate based joint posterior marginal for q1 and q2 using the iterative (left)
and global (right) methods. Shown are iso-contours of the joint-posteriors marginals obtained by kernel

density estimation in the three cases � = 0.5, 1 and 2. Computation with Nmax = 1500, No
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(GSA) of the observables. Section 4 discusses results of the Bayesian infer-
ence, comparing the use of di↵erent likelihood functions, involving the raw
measurements or selected features of the model dynamics. We finally summa-
rize our findings in Section 5.

2 Debris flow model

In this section we briefly discuss the physical model used to simulate the
downslope debris flow experiments, with dam-break initial conditions (i.e. an
instantaneously opened gate). The parameters of the inference problem are
subsequently introduced as well as the Bayesian framework adopted for their
calibration.

2.1 Numerical model

The model employed in this work describes a debris flow on an inclined pla-
nar basal surface. The coordinate system uses components parallel to the bed
surface, x-pointing along the highest slope direction and y in the transverse
direction. The model equations involve five independent variables: the debris
height h(x, y, t) (in the normal direction), the vector of height-averaged veloc-
ities u with components u(x, y, t) and v(x, y, t) in the x and y directions, the
height-averaged solid volume fraction m(x, y, t), and the pore-fluid pressure
at the bed pb(x, y, t). A detailed derivation of the mathematical model can be
found in [18]; the governing equations are
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In these equations, we denoted gz = 9.8 m2/s, the gravitational acceleration
in the bed-normal direction,  the lateral pressure coe�cient and ⇢ the depth-
averaged bulk density. The latter is given by ⇢ = ⇢sm + (1 � m)⇢f where the
intrinsic material densities of the solid and fluid constituencies are fixed to
⇢s = 2700 and ⇢f = 1100, respectively. Finally, the coe�cient � = ⇢gz

⇢f +3⇢
4⇢
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is introduced for notational convenience. The source terms appearing in gov-
erning equations are given by:

'1 =
(⇢� ⇢f )

⇢

�2k

hµ
(pb � ⇢fgzh), (6)

'2 = hgx + u
(⇢� ⇢f )

⇢

�2k

hµ
(pb � ⇢fgzh) � (⌧s,x + ⌧f,x)

⇢
, (7)

'3 = hgy + v
(⇢� ⇢f )

⇢

�2k

hµ
(pb � ⇢fgzh) � (⌧s,y + ⌧f,y)

⇢
, (8)

'4 =
2k

hu
(pb � ⇢fgzh)m

⇢f

⇢
, (9)

'5 = ⇣
�2k

hµ
(pb � ⇢fgzh) � 3

↵h
kuk tan( ), (10)

where

⇣ =
3

2↵h
+

gz⇢f (⇢� ⇢f )

4⇢
, ↵ =

a

m(⇢gzh � pb + �0)
. (11)

The definition of the elastic compressibility of the debris, ↵, involves the com-
pressibility constant a > 0 and the initial normal stress �0 = 1000. The
hydraulic permeability, k, follows the empirical formula, k = k0 exp( 0.6�m

0.04 ),
where k0 is the initial permeability. The basal shear tractions exerted on the
solid and fluid phases, ⌧ s and ⌧ f respectively, are expressed according to:

⌧ f =
2µ(1 � m)

h
u and ⌧ s = (⇢gzh � pb) tan(�+  )

u

kuk ,

where µ is the viscosity of the pore fluid, � is the volume basal friction angle
and  the granular dilatancy angle. Following [18], the dependence of  on m
is expressed as

tan( ) = m � mcrit

1 +
q

µ�̇
⇢s�̇2�2+(⇢gzh�pb)

with �̇ = 2kuk/h, (12)

where � = 0.001 is the length scale associated with the grain collisions and
mcrit > 0 is the static critical-state solid volume fraction.

The hyperbolic character of the governing equations was proved in [11].
We rely on D-Claw to compute numerical solutions of Eqs. (1)-(5). D-Claw is
an extension of the open source software package CLAWPACK (Conservation
Laws Package [44]) dedicated to the simulation of hyperbolic systems of Partial
Di↵erential Equations (PDEs) using di↵erent finite-volume, wave-propagation
methods [27,21,25,26]. In particular, we have used in this work the D-Claw
application for flume problems available in the Github repository [10] that
was also used in [11]. This application allows to prescribe several parameters
of the model. The main objective of the present work is to investigate the in-
ference of the five parameters of the model that have so far remained unfixed,
namely the static critical-state solid volume fraction (mcrit), the initial debris
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steady friction contact angle φ
compressibility constant a.

Gate release experiments: available measurements
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Debris flow model

A priori range of model parameters
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(a) Original distribution, 2-D model
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Fig. 1 Flow thickness versus time for selected values of the parameters and location
x = 32 m; (a) corresponds to the original parameters range and 2-D model, whereas (b)
corresponds to the reduced range for k0 and 1D model.

the fragmentation and associated peaks in the time signals. It was further
found that the fragmentation is associated with the lowest values of k0 in its
prior range. In addition, observing that such peaks are not appearing in the
averaged experimental measurements of the debris elevation (see Figure 6),
it was decided to rule out a priori lowest values of k0 below 10�9, responsi-
ble for the fragmentation-induced peaks, and to consider the following prior
distributions for the parameters:

mcrit ⇠ U [0.62, 0.66], k0 ⇠ Ulog[10�9, 10�8],

µ ⇠ Ulog[0.005, 0.05], � ⇠ U [0.62, 0.66], a ⇠ U [0.01, 0.05]. (16)

We now return to the issue related to transverse waves. The problem here is
the loss of solution uniqueness, because transverse waves can propagate asym-
metrically along the ±y direction. As the propagating direction is random, it
can change sign from a value of the parameters to another, with parametric dis-
continuities as a result. This randomness leads to severe di�culties in obtaining
an accurate surrogate model, and raises questions regarding the definition of
the model prediction to be used in the likelihood function (should the local or
span-averaged predicted elevations be compared with the reported data?). To
avoid these issues, we decided to prevent the emergence of transverse waves in
numerical solution, reducing the initial set of 2D PDEs to 1D PDEs, remov-
ing the y dependence of the solution. With this dimension reduction we not
only recover uniqueness of the solution, but also rely on simulations that are
faster and cheaper to conduct. The e↵ect of the dimension reduction on the
model predictions was carefully analyzed. It was found (not shown) that the
reduction has no impact on the long-time solution. Di↵erences between the 1D
and 2D predictions are observed at early times, particularly when the debris
height is close to its maximum, as reported in Figure 2 which shows the one
at a time sampling for parameters k0 and a. However the plots shows that the
trends and dependencies are correctly captured, but in contrast with the 2D
case the dependence of the 1D model solution with respect to the parameter
is smooth. Finally, the di↵erences between the 1D and 2D models are smaller

A priori analyis
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ted in blue. The plots highlight significant discrepancies between the model
predictions and the measurements. In particular, the arrival times at loca-
tions x = 2 m are clearly not well predicted by the model and the long-term
behavior is not well predicted, with a faster decay of h in the model.

(a) x = 2 m (b) x = 32 m (c) x = 66 m

Fig. 6 A priori predictive range of the surrogate for the debris flow thickness h (red shaded
area) and mean plus and minus one standard deviation bounds of the experimental mea-
surements (blue shaded area). The a priori predictive range is defined by the 5th percentile
to 95th percentile interval.

4 Inference of debris flow parameters

In this section, we report the results of the Bayesian inference of the model pa-
rameters, and contrast the case of di↵erent likelihood functions. In particular,
we contrast the inference results for the case of a likelihood comparing directly
the reported experimental data to the model predictions, in Section 4.1, with
the case of an inference based on quantities derived from the available data,
in Sections 4.2 and 4.3.

We recall that the experimental measurements concerned the wave height
h at di↵erent times and at three di↵erent locations, see Section 2.2. In fact, the
available data consist of the debris height h̄i averaged over 11 repetitions of the
experiment and its standard deviations �i, as depicted in Figure 6. We stress
that the measurements of individual experiments are not provided. In addition,
we have retained 1,501 data at each location, so a total of md = 1501⇥ 3 data
are available for the inference.

4.1 Direct inference from the experimental data

We begin by performing the inference directly on the available experimental
data. Using the notation of Section 2.3, this corresponds to using m(d) = d.
The posterior distribution of the parameter is fully determined by the like-
lihood function L(d|q). Recalling that q is parametrized by the canonical
variables ⇠ we shall also write the likelihood L(d|⇠) in the following.
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Independent measurement errors

Naive model: Gaussian likelihood
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Gaussian models are often considered to derive likelihood functions. Specif-
ically, one typically assumes that the discrepancy between the observed and
predicted values is Gaussian. Following this path, we write

h̄i = bh(ti, xi, ⇠) + ✏i, i = 1, . . . , md, (22)

where ti and xi denote here the time and location of the i-th experimental data.
It then remains to specify the structure of the Gaussian vector ✏ = (✏1 · · · ✏md

).
Based on the available data, the simplest model we can propose for ✏ is a
vector of independent components having zero mean and a variance given by
the estimated experimental variability, that is ✏i ⇠ N(0,�2

i ). In this case, the
likelihood expression becomes

L(d|⇠) =

mdY

i=1

1p
2⇡�2

i

· exp

"
� (h̄i � bhi(⇠))

2

2�2
i

#
, (23)

where bhi(⇠)
.
= bh(ti, ⇠) is the surrogate model prediction of the i-th experimen-

tal data.
When expressed in terms of the canonical variables ⇠, which are uniformly

distributed, the MAP determination reduces to the maximization of the like-
lihood because ⇡(⇠) is constant. For convenience, the log-likelihood is maxi-
mized in practice, using a genetic algorithm as discussed before. In addition
to the MAP computation, we also sample the posterior distribution by means
of Markov-Chain Monte-Carlo method, to estimate the posterior density of
the parameters (or canonical random variables) as well as the posterior pre-
dictive distribution of the debris height. In all computations shown hereafter,
the convergence of the MCMC chains have been carefully checked, through vi-
sual inspection and computation of the empirical auto-correlation at lags [5].
Typically, 60,000 steps after the burn-in period were used to estimate the
statistics. A Standard Kernel Density Estimation (KDE) method [34,40] was
subsequently applied on the MCMC samples to obtained the posteriori densi-
ties.

Figure 7(a) compares the posterior predictive range using the likelihood
definition in Eq. 23 (labeled original, shaded in red) and the experimental
data. The posterior predictive range is again defined based on the 5th to 95th
percentiles. It is seen that the posterior predictive range remains tight around
the MAP prediction, suggesting a high confidence in the inferred values for the
parameters. This is confirmed by the highly concentrated marginal posteriors
of the canonical variables reported in Figure 8(a).

This impressive reduction of the prior distribution to a highly concentrated
posterior should be contrasted with the actual remaining discrepancies be-
tween the model predictions and the assumptions used to derive the likelihood
function. First, it is remarked that the posterior predictive range does not
contain the experimental data. In addition, inspection of the residuals for the
MAP solution, ✏i = h̄i �bhi(⇠MAP ) reported in ref in Figure 7(b), reveals that
the ✏i are clearly not independent, but quite correlated in time, and assume
values inconsistent with the experimental values �i.

Independent / uncorrelated "measurement noise"
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Appreciating inference quality

Trying to fit "important characteristics"
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For the definition of the likelihood, we again assume the error on the scaling
factors to have independent components corresponding to normally distributed
random variables with zero mean. The log-likelihood at a given location x is
expressed as

ln(L(d|⇠)) / �
 

tarr � btarr(⇠)
2�arr

!2

�
 

tmax � btmax(⇠)

2�tmax

!2

�

�
 

tdec � btdec(⇠)

2�dec

!2

�
 

hmax � bhmax(⇠)

2�hmax

!2

. (26)

In Eq. (26), tarr, tmax, tdec and hmax are experimental estimates of the scaling
factors at the considered location, and �2

tarr , �
2
tmax

, �2
tdec

and �2
hmax

are their
associated variances. These quantities must be estimated from the data at each
spatial location, and the log-likelihoods of the di↵erent locations are summed-
up to form the full log-likelihood.

The experimental scaling factors are graphically estimated from the data at
each location, as illustrated in Figure 9. The experimental values are selected
as the best graphical estimates, with associated standard deviations reflect-
ing their probable ranges, adjusted to account for the experimental noise and
fluctuations. In the plots, the shaded areas are centered on the best estimates
with extents corresponding to the ±1 standard deviation uncertainty ranges on
the experimental estimates. It is seen that the experimental arrival times are
all well determined (with low variances), while the experimental decay times
have higher standard deviations especially at the largest downstream location,
where it cumulates significant uncertainty in the value at maximum hmax with
large fluctuations in the experimental data during the decay phase. The esti-
mates of the scaling factors used for the inference problem and corresponding
to the graphical representation in Figure 9 are listed in Table 2.

(a) x = 2 m (b) x = 32 m (c) x = 66 m

Fig. 9 Estimation of the experimental scaling factors. The shaded areas are centered on
the best estimates, while they extend over ±1 standard deviation range, horizontally for the
scaling times and vertically for hmax.

Figure 10(a) shows the posterior predictive range for the proposed like-
lihood together with the experimental data at x = 32 m. It is seen that
the predictions are very close to the posterior prediction obtained with the
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Limits of the model - experimental issues

With feedback from experimentalist
Measurements were synchronized:
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error model. On the other hand, the posterior prediction is still poorly fitting
the experimental data with a very tight posterior predictive range. This is
not so surprising as the a priori sensitivity analysis shown in Section 3.3.2
had revealed the limitation of the physical model, in particular when it comes
to the arrival time prediction: whereas the experimental data show little or
no variability in tarr, the numerical model is not capable of reproducing it
for any value of the parameters in the a priori range. In fact, increasing the
a priori range may not necessarily help in improving the model predictions.
This leads us to wonder whether the individual experimental measurements
may have been synchronized before being averaged, with an arbitrary time
shift as a result. In the absence of information regarding the experimental data
treatment and processing, we opted to design a formulation of the inference
problem that is independent to absolute time reference. Instead, we propose to
base the inference on the durations of the two main phases of the debris flow
dynamics, and not on their starting and ending times. For instance, we do not
attempt to fit the arrival time and time at maximum, separately, but instead
we consider the duration of the growth phase, spanning from the arrival to
the maximum debris height. Similarly, we set the duration of the decay phase
as the time span between the time at maximum and the time to decay, as
defined previously. The definitions of these two characteristic durations are
summarized in the Table 3.

Phase name Symbol Definition
Growth duration Tgrw Tgrw = tmax � tarr
Decay duration Tdec Tdec = tmax � tdec

Table 3 Definitions of the characteristic durations of the debris flow dynamics.

Having selected these two characteristic durations, we again assume a
Gaussian error model with independent components, which leads to the fol-
lowing log-likelihood function at a spatial location:

ln(L(d|⇠)) / �
 

Tgrw � dTgrw(⇠)

2�Tgrw

!2

�
 

Tdec � dTdec(⇠)

2�Tdec

!2

�
 

hmax � bhmax(⇠)

2�hmax

!2

,

(27)

where dTgrw = btmax � btarr and bTdec = btdec � btmax are the surrogate models
for the growth and decay durations respectively. The best experimental es-
timates of Tgrw and Tdec are computed from the estimates of tarr, tmax and
tdec reported in Table 2, while their standard deviations �Tgrw

and �Tdec
are

estimated graphically from the experimental data, proceeding similarly as for
the standard deviations of the experimental scaling factors. The estimates of
hmax and �hmax

are kept the same as in the previous case. Table 4 summarizes
the experimental estimates used for the inference based on durations.

Figure 11 shows the posterior predictive ranges at the three locations, as
red shaded areas, corresponding to inference using durations. The solid red
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x = 2 m x = 32m x = 66m
Tgrw = 0.95 �Tgrw = 0.1 Tgrw = 1 �Tgrw = 0.25 Tgrw = 2 �Tgrw = 1

Tdec = 1.15 �Tdec
= 0.25 Tdec = 3 �Tdec

= 0.6 Tdec = 4 �Tdec
= 2

hmax = 0.61 �hmax = 0.1 hmax = 0.17 �hmax = 0.04 hmax = 0.1 �hmax = 0.03

Table 4 Experimental estimates of the characteristic durations of the debris flow.

line inside the shaded area corresponds to the posterior expected predictions
of h(t). Since the estimation is time-independent, the experimental data have
been shifted in time such that the arrival times of both the predictions and the
data match. A striking di↵erence with inference results presented above is the
much larger posterior predictive range obtained in the present case. Indeed,
although the a priori predictive ranges (see Figure 6) have been noticeably
reduced, the posterior predictions of the debris height are now significantly
uncertain. The overlap of the posterior prediction with the experimental data
is also significantly improved, compared the cases of the previous likelihood
considered. Besides the impact on the spread of the posterior distribution, the
inference based on durations is also seen to drastically improve the prediction
of the maximum debris height, which was systematically underestimated for
the other likelihoods tested previously (see Figures 7 and Figure 10). Note also
that the MAP prediction (not shown) is not contained within the posterior
predictive range as defined by the 5th to 95th percentiles.

(a) x = 2m (b) x = 32m (c) x = 66m

Fig. 11 Inference based on durations: Posterior predictive ranges for the inference based
on durations. The experimental data (labeled Obs) are also reported for comparison, and
have been shifted in time to match the expected arrival times.

To better appreciate the impact of the proposed formulation of the infer-
ence problem on its outcome, we present in Figure 12 the marginal posterior
distributions of the canonical random variables. In contrast to the previous
cases, the marginals are not concentrated anymore and exhibits several lo-
cal maxima. Note that the canonical random variable ⇠1 presents a posterior
marginal that di↵ers the most from its prior distribution with essentially no
posterior probability for values lower than 0.2. This is consistent with the
findings of the a priori sensitivity analysis shown in Section 3.3.2, since ⇠1
parametrizes mcrit that was found to be responsible for most of the variability
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error model. On the other hand, the posterior prediction is still poorly fitting
the experimental data with a very tight posterior predictive range. This is
not so surprising as the a priori sensitivity analysis shown in Section 3.3.2
had revealed the limitation of the physical model, in particular when it comes
to the arrival time prediction: whereas the experimental data show little or
no variability in tarr, the numerical model is not capable of reproducing it
for any value of the parameters in the a priori range. In fact, increasing the
a priori range may not necessarily help in improving the model predictions.
This leads us to wonder whether the individual experimental measurements
may have been synchronized before being averaged, with an arbitrary time
shift as a result. In the absence of information regarding the experimental data
treatment and processing, we opted to design a formulation of the inference
problem that is independent to absolute time reference. Instead, we propose to
base the inference on the durations of the two main phases of the debris flow
dynamics, and not on their starting and ending times. For instance, we do not
attempt to fit the arrival time and time at maximum, separately, but instead
we consider the duration of the growth phase, spanning from the arrival to
the maximum debris height. Similarly, we set the duration of the decay phase
as the time span between the time at maximum and the time to decay, as
defined previously. The definitions of these two characteristic durations are
summarized in the Table 3.

Phase name Symbol Definition
Growth duration Tgrw Tgrw = tmax � tarr
Decay duration Tdec Tdec = tmax � tdec

Table 3 Definitions of the characteristic durations of the debris flow dynamics.

Having selected these two characteristic durations, we again assume a
Gaussian error model with independent components, which leads to the fol-
lowing log-likelihood function at a spatial location:

ln(L(d|⇠)) / �
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where dTgrw = btmax � btarr and bTdec = btdec � btmax are the surrogate models
for the growth and decay durations respectively. The best experimental es-
timates of Tgrw and Tdec are computed from the estimates of tarr, tmax and
tdec reported in Table 2, while their standard deviations �Tgrw

and �Tdec
are

estimated graphically from the experimental data, proceeding similarly as for
the standard deviations of the experimental scaling factors. The estimates of
hmax and �hmax

are kept the same as in the previous case. Table 4 summarizes
the experimental estimates used for the inference based on durations.

Figure 11 shows the posterior predictive ranges at the three locations, as
red shaded areas, corresponding to inference using durations. The solid red
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in the model output. The other canonical random variable associated to the
other model parameters have on the contrary much flatter posterior marginals
reflecting that the inference process has not yielded a significant update of
their prior. In our opinion, this result is much more satisfying than the pre-
vious ones. Moreover, it is consistent with the a priori GSA since it does not
make sense to learn a lot from the values of the model parameters which have
essentially no impact on the prediction.
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Fig. 12 Marginal posterior distributions of the canonical random variables.



Bayesian Inference of Model Parameters Complexity Reduction using Surrogate Reduction of Observations Conclusions and outlooks

Selection of Observation: an example

Take-away

What did we learn?
Experimental data may be biased
Raw measurements, or complete description of their treatments, are important
Using all the available data may be counterproductive (yes!)
If the model is poor, we should focus on basic features of interest, and not insist
on obtaining global agreement
Models of model error are more robust and easier to propose & test for simple
features

How to select / reduce the experimental data to facilitate the inference problem?

[Navarro, OLM, Mandli, George, Hoteit and Knio. Comp. Geosciences, in press.]
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Optimal Observations Reduction

Motivation
Bayesian inference in the case of overabundant data

Weather forecasting
Seismic wave inversion

Goal
Compute an optimal approximation

min
V

L
(

P(Q | Y = y),P(Q |W = V T y)
)

L a loss function
n (random) observations Y = (Yi )n

i=1

q parameters Q = (Qi )Nq
i=1, Nq� n

r dimensional reduced space V ∈ Rn×r , r � n

[Giraldi, OLM, Hoteit and Knio. Comp. Stat. & Data An., sub.]
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Linear Gaussian models

Gaussian model
Y = BQ + E ,

Observations: Y ∼ N (mY ,CY ) with values in Rn

Parameter of interest: Q ∼ N (mQ ,CQ) with values in RNq

Noise: E ∼ N (mE ,CE ) with values in Rn

Design matrix: B ∈ Rn×Nq

Forward model: A(Q) = BQ ∼ N (mA,CA), and CAQ = Cov(A(Q),Q)

Reduced model
W = V T BQ + V T E ,

Reduced observations: W ∼ N (mW ,CW ) with values in Rr

Reduced space: V ∈ Rn×r
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Posterior distributions

knowing the realization (a particular measurement) y of Y

Unreduced case

The posterior distribution is P(Q | Y = y) ∼ N (m?,C?) where

C? = CQ
(

CQ + CT
AQC−1E CAQ

)−1 CQ ,

m? = CT
AQC−1Y (y −mE ) + C?C−1Q mQ .

Reduced model

The posterior distribution is P(Q |W = V T y) ∼ N (mV ,CV ) where

CV = CQ

(
CQ + CT

AQV
(

V T CE V
)−1 V T CAQ

)−1
CQ ,

mV = CT
AQV (V T CY V )−1V T (y −mE ) + CV C−1Q mQ .
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Invariance property

Proposition (Invariance property)

For all invertible matrices M ∈ Rr×r
∗ , we have

mVM = mV and CVM = CV .

Posterior distribution invariant under rescaling, rotation or permutation of the
observations
Newton method can not be directly used
range(V ) is more important than V
Use of a Riemannian trust region algorithm on the Grassmann manifolds Gr(r , n),
the set of r -dimensional subspaces of Rn (see Absil et al. 2007, Manopt and
Pymanopt libraries)
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Kullback-Leibler based loss functions

Kullback-Leibler divergence

Given two distributions P(Z0) and P(Z1) with densities fZ0 and fZ1 ,

DKL (P(Z0) ‖ P(Z1)) = EZ0

(
log

fZ0

fZ1

)
.

Quantify the “information lost when [P(Z1)] is used to approximate [P(Z0)]”
(Burnham and Anderson, 2003)
Positive and null iff P(Z0) = P(Z1)
Asymmetric quantity
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Kullback-Leibler based loss functions

Kullback-Leibler divergence minimization

min
[V ]∈Gr(r,n)

DKL
(

P(Q | Y = y) ‖ P(Q |W = V T y)
)

Closed form of the functional available
A solution to the optimization problem exists
A posteriori reduction (measurement available)

Expected Kullback-Leibler divergence minimization

min
[V ]∈Gr(r,n)

EY
(

DKL
(

P(Q | Y ) ‖ P(Q |W = V T Y )
))

Closed form of the functional available
A solution to the optimization problem exists
A priori reduction
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Information-based loss function

Given random variables Z , Z0, and Z1,

Entropy

With Z ∼ P(Z),
H (Z) = EZ (− log(fZ (Z))).

Amount of information contained by P(Z)

Mutual information

With Z0 ∼ P(Z0) and Z1 ∼ P(Z1),

I(Z0,Z1) = H (Z0) + H (Z1)−H (Z0,Z1) ,

Amount of information that P(Z0) contains about P(Z1)
Symmetric quantity
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Mutual information maximization

Theorem (Mutual information maximization)

We have

max
V∈Rn×r

∗
I(W ,Q) = 1

2

r∑

i=1

log λi ,

where (λi )r
i=1 are the r dominant eigenvalues of the problem

CY v = λCE v , λ ∈ R, v ∈ Rn.

A solution to the optimization problem is given by the matrix V with columns being
eigenvectors (vi )r

i=1 associated to the eigenvalues (λi )r
i=1. (Error estimator)

Equivalences
The mutual information maximization is equivalent to:

the maximization of the expected information gain
max

V∈Rn×r
∗

EW (DKL (P(Q|W ) ‖ P(Q)))

the minimization of the entropy of the posterior distribution
min

V∈Rn×r
∗

H
(

P(Q|W = V T y)
)
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Inference problem

Synthetic data

For (ti )n
i=1, n = 500, a uniformly drawn sample in (−1, 1),

Yref(ti ) = Aref(ti ) + E(ti ), ∀i ∈ {1, . . . , n},

with Aref ∼ N (mref,Cref) and E ∼ N (mE ,CE ).

Model

Yi =
Nq−1∑

j=0

Tj (ti )Qj + E(ti ), ∀i ∈ {1, . . . , n},

with Tj the Chebyshev polynomial of order j and Nq = 30.
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Functionals versus the dimension of the reduced space
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Reduction of observations

Inference problem: nonlinear models

Synthetic data

Given two random samples (si )n
i=1 and (ti )n

i=1 being independent and uniformly
distributed in (−1, 1), with n = 2000,

Yref(si , ti ) = exp(Fref(si , ti )) + E(si , ti ), ∀i ∈ {1, . . . , n},

where Fref ∼ N (0,Cref), E ∼ N (0,CE ).

Model
Yi = Ai (Q) + E(si , ti ), ∀i ∈ {1, . . . , n},

where Ai (Q) = exp((BQ)i ), Q ∼ N (0,CQ), and q = 30.
Columns of B: dominant eigenvectors of Cref

CQ = diag(λ1, . . . , λq): dominant eigenvalues of Cref
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Errors versus the dimension of the reduced space σFref = 0.301 (top), σFref = 1.501 (bottom)
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Reduction of observations

Inference of conductivities

The model:
∇ (κ(xxx)∇U(xxx)) = −1, κ(xxx ∈ Ωi ) = κi ,

where log κi ∼ N(0, 1). Observed at n = 32, 000 points with Gaussian noise.
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Figure 11: Contour plot of A(xMAP) (dashed lines) and A(xMAP
V ) (solid lines) for the PCA-Y (left) and the MI (right) methods

with a dimension of the reduced space r = 400.

subdomains, �1,2,3, of the two-dimensional domain � depicted in the left plot of Figure 12. These Ÿ�j are
independent and follow a log-normal distribution with parameters µŸ, ‡Ÿ. They are therefore expressed as

Ÿ�j
= exp [µŸ + ‡ŸXj ] , Xj ≥ N (0, 1).

Thus, the vector of parameters to be inferred is X œ Rq, q = 3. For simplicity, but without loss of generality,
we shall use hereafter µŸ = 0 and ‡Ÿ = 1. The inference uses a large set of n ¥ 32, 000 observations Yi
modeled as

Yi = Ai(X) + Ei, (23)
where Ai(X) := U(xi) is the solution at the observation point xi œ � of the elliptic partial di�erential
equation with uncertain parameters Ÿ�j

:

Ò · (Ÿ(x)ÒU(x)) = ≠1, Ÿ(x œ �j) = Ÿ�j
.

The model equation is equipped with homogeneous Dirichlet (resp. Neumann) boundary conditions on the
vertical and horizontal (resp. oblique) boundaries of �. The model for the Ei is again the independent
centered Gaussian model with variance ‡2
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Figure 12: Left plot: Schematic of the problem domain (contained in a 3 ◊ 3 square) and its three subdomains, �j , over which
Ÿ = Ÿj is constant. Centre plots: centroids location for 20 and 100 clusters. Right plot: observation points xi.

For the reduction, we consider the maximization of the mutual information (MI), requiring the solution
of (15). Since CE is diagonal, the reduced basis is given by the dominant eigenspace of CA. Di�erent

21

Dominant modes of the projection:

approaches can be used to estimate CA. Here, we rely on a Polynomial Chaos (PC) method [21], exploiting
the low dimensionality of X, and a standard, second-order finite element method for the spatial discretization
of the elliptic problem on a very fine mesh. As expected from the low dimensionality of X, the decay of the
spectrum of CA is very fast. In Figure 13 we plot the first five dominant modes of CA using the observation
points shown in the right plot of Figure 12. Note that these observation points cover well the entire domain
�.

Figure 13: The five leading reduced modes (from left to right) of the MI method plotted against the n ¥ 32, 000 observation
points shown in the right plot of Figure 12.

For comparison purposes, we also consider more reduction approaches based on observation clustering.
Indeed, the amount of observations (n ¥ 32, 000) appears an overkill to learn just q = 3 parameters. It is
consequently tempting to disregard some observations and retain only k > 0 of them to carry the inference.
However, we want to maintain a su�cient coverage of the domain, and so we rely on a clustering method
(k-means [16, 23]) to partition the observations set into k > 0 distinct subsets, minimizing the Euclidean
distances between the xi and their respective cluster’s centroids. The k-means procedure randomly generates
clusters with a roughly equal number of observations. In each cluster, the position xi of the selected
observation is the one closest to the corresponding cluster centroid. Two examples of selected observation
points are depicted in the two center plots of Figure 12, for k = 20 and 100 clusters respectively. We
shall refer to this reduction approach as “Centroids.” Disregarding all observations but the k-th closest to
the centroids is clearly a brutal reduction approach, which is more susceptible to be a�ected by the noise
compared to an approach involving the projection of all observations. Consequently, one may prefer to
average (with equal weight) all the observations belonging to a cluster to define the corresponding reduced
observation. This approach is referred to Cluster Averages (CAv) in the following.

The MI, Centroids and CAv reduction approaches are compared for three noise levels. The measurements
yi are randomly generated from (23) and plotted in Figure 14 to appreciate the noise to signal ratio.

Figure 14: Measurements yi for noise level ‡‘ = 0.01, 0.1 and 0.5 from left to right.

To quantify the reduction errors, we consider as before the distance to the unreduced MAP point and
Hessian:

‘̂(y) =
..xMAP

V ≠ xMAP..
ÎxMAPÎ and ‘̂H(y) =

...
!
CMAP
V

"≠1 ≠
!
CMAP"≠1

...
Fro...(CMAP)≠1

...
Fro

.

22



Bayesian Inference of Model Parameters Complexity Reduction using Surrogate Reduction of Observations Conclusions and outlooks
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Inference of conductivities

The model:
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where log κi ∼ N(0, 1). Observed at n = 32, 000 points with Gaussian noise.
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independent and follow a log-normal distribution with parameters µŸ, ‡Ÿ. They are therefore expressed as

Ÿ�j
= exp [µŸ + ‡ŸXj ] , Xj ≥ N (0, 1).

Thus, the vector of parameters to be inferred is X œ Rq, q = 3. For simplicity, but without loss of generality,
we shall use hereafter µŸ = 0 and ‡Ÿ = 1. The inference uses a large set of n ¥ 32, 000 observations Yi
modeled as

Yi = Ai(X) + Ei, (23)
where Ai(X) := U(xi) is the solution at the observation point xi œ � of the elliptic partial di�erential
equation with uncertain parameters Ÿ�j

:

Ò · (Ÿ(x)ÒU(x)) = ≠1, Ÿ(x œ �j) = Ÿ�j
.

The model equation is equipped with homogeneous Dirichlet (resp. Neumann) boundary conditions on the
vertical and horizontal (resp. oblique) boundaries of �. The model for the Ei is again the independent
centered Gaussian model with variance ‡2
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For the reduction, we consider the maximization of the mutual information (MI), requiring the solution
of (15). Since CE is diagonal, the reduced basis is given by the dominant eigenspace of CA. Di�erent
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Convergence to unreduced MAP and Hessian:

Note that we do not average over random observations Y , and restrict the analysis to a unique measurement
y, because of the involved computational times. The convergence of the errors ‘̂(y) and ‘̂H(y) with the
dimension of the reduced spaces is reported in Figure 15, for the three approaches and the highest noise
level (‡‘). It is seen that the MI reduction converges for roughly 10 reduced modes, and outperforms the
cluster-based reduction methods that converges at a much lower rate. As one may have expected, the
convergence of the errors in the cluster-based methods is also noisier than in MI, with Centroids exhibiting
higher sensitivity to noise than CAv.

0 20 40 60 80 100
10≠7

10≠6

10≠5

10≠4

10≠3

10≠2

10≠1

100

Dimension of the reduced space

‘̂(
y
)

MI
Centroids
CAv

0 20 40 60 80 100
10≠7

10≠6

10≠5

10≠4

10≠3

10≠2

10≠1

100

Dimension of the reduced space

‘̂ H
(y

)

MI
Centroids
CAv

Figure 15: Convergence with the reduction dimension of the MI, Centroids and Cluster Averages errors on MAP (‘̂(y), left)
and Hessian (‘̂H(y), right). Case of high noise level ‡‘ = 0.5.

However, the slow convergence of the cluster-based methods is due to the large noise in the previous
example. This can be appreciated form the results reported in Figure 16, which show that ‘̂ and ‘̂H decrease
with the noise level in the CAv method, but that the convergence rate remains the same. Also note that
the convergence rate of the MI method appears to be insensitive to the noise level.
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Figure 16: Convergence with the reduction dimension of the MI (solid lines) and CAv (dashed lines) MAP errors (‘̂(y), left)
and Hessian errors (‘̂H(y), right). Plotted are the errors for di�erent noise intensities as indicated.

5.6. Summary
The numerical experiments of Sections 5.3–5.5 suggest that the information theoretic approaches yield

robust reductions even though they were developed for linear Gaussian models. We have shown in particular
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