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Bayesian Inference

Parametric uncertainty

o uncertain model prediction M(q)

o incomplete knowledge of some model parameters: q ~ p(q)
o uncertainty reduction strategies

Bayes formula

We want to update / infer a finite set of parameters q € RY, using

o aset O={y; €R,i=1,..., M} of observations,
o the model prediction of the observations: U(q) € RM

Bayesian rule to update our knowledge on q:
Ppost(q|0) < L(O|q)p(q),
with

o L(O|q) is the likelihood of the measurements,
o p(q) is the parameters’ prior,

0 ppost(q|O) is the posterior.
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Bayesian Inference

=

Likelihood function (Gaussian example)

Model for the measurements error (noise):
\/I' = Ul(q) < Gy € = N(0,0',-z),
The likelihood becomes:

L©la) = [Jexr o
I

i=1

5 Pm-wmﬂl

Posterior sampled, for instance using Markov Chain Monte Carlo (MCMC).
Note: in reality needs hyper-parameters (i.e. noise variance).

Issues:

o Rely heavily on multiple evaluations of the model ¢ — U(q) = (U1 - - - Un)(q):

use of surrogate models

o Assumes the measurements to be informative: more is not always better, in
particular in the absence of complete information regarding protocols

o Calls for the selection of robust and informative observations

o Model error?

DA



o Suppose that we have the following
polynomial model:

“True” polynomial

u(x) = 10 — 2x + 7.5x% — 3.3x> — 3.2x*

observed at at N coordinates {x;}¥, € (0,1)

o We perturb the observations with a Gaussian
noise with mean zero and variance 0.01, i.e.

N(0,0.01).

o This yields a set of noisy observations,
({xi, yits)-

o For this example we have N = 30. (We will

discuss the effect of the number of
observations)
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o Objective: given the data O = {Yi},N:p can we recover the original polynomial?

o We need to define a model (i.e. the hypothesis) to describe the data
o Our model is a polynomial of certain order p:

P
M(xla) = > aix*
k=0

o It follows that our set of parameters is:

q= {‘IO,Q17Q2,~~-7¢IP}

Bayes’ theorem

poost ({akYooo 1yt 1) oc L({yi} s HakYooo) P({ak}h_o)
o We now need to define the likelihood and priors.
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10.75

1055
o To formulate the likelihood we assume the

. . . 10.35
following relationship: 1015
yi = Ui(q) + €, Ui(q) = M(xilq) Lo

g a7

where ¢; is a random variable which represents 955
the discrepancy between the i-th observation, y;, 935
and the model evaluated at the i-th coordinate, 9.5
M(xiq). 895

75|
.75

0.2 0.4 0.6
X

o Assuming N independent realizations and ¢; ~ N(0,02), i = 1,..., N, the
likelihood can be written as

N
i — Ui(q))?
= p({Yf §V=1|{qk}i=o) = H \/21;_7 exp <(y 20.2(q)) >
i=1

o Objective: jointly infer 02 and {q)}}_,.

0.8
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The choice of a prior should be based, when possible, on some a priori knowledge
about the parameters.

We have p + 2 unknowns, i.e. the (p + 1) coefficients {px}?_, and the variance

a2

For each py, since we have limited information and for the purpose of this
exercise, we choose a uniform distribution

1

= for —200 < g, < 200,

p(qx) = § 200 . W=
0 otherwise |,

In theory, these bounds can be made arbitrarily large.

We know that o2 cannot be negative: this information is what we defined as a
priori knowledge about a parameter. We assume a Jeffreys prior:

1 2
P(az) _Jlz for o > 0,
0 otherwise.

u]
o)
1
n
it

RN Ge



Bayesian Inference

Final form of the joint posterior

i _ Ua))? 2
Ppost({Qk}£=0a02|{}’i},N:1) o H \/% exp <(y, zgé(q)) ) P(c?) Hp(qj)
i=1

Jj=0

o The problem now reduces to simulate (sample) this posterior.
o We are dealing with a (p + 2)-dimensional probability distribution.

o For high-dimensional cases, which are also the only interesting ones, use Markov
chain Monte Carlo (MCMC) methods.

o MCMC: class of algorithms suitable to sample high-dimensional probability
distributions.

o Must pay attention to mixing ability, convergence...

o Important feature: the quality of the sample improves as a function of the
number of steps.
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Markov Chain Monte Carlo

RN Ge




Back to polynomial inference example
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Elementary Examples

o Suppose that we infer a zeroth-order polynomial:

M(xlq) = qo

o We know that this is far from the true model defined before, which was a
fourth-order polynomial.

Two-dimensional joint posterior

N
prost(a0, o[y} ) o | [ ] V;Texp((”;g?)z) P(o%) p(40)
i=1
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o Chain samples can be used to estimate the marginalized posteriors of the
parameters via KDE.
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Inference for higher-degree polynomial
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Elementary Examples

o Suppose that we infer a fourth-order polynomial

M(x|q) = qo + q1x + g2x° + q3x> + qax

Six-dimensional joint posterior

N
Ppost ({qk } & 0702|{}’i},N:1) o H \/;7

- U: 2
exp((y' Ua) )

P(o?) Hp(q,

Jj=0

Ir‘ | “,
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Elementary Examples
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o Results based on the MAP estimates of the coefficients.

o Note: increasing the order of the polynomial yields a lower value of the variance
because the model is getting closer to the true curve.
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Bayes’ formula:

Inference of g € RY from O = {y; € R,i =1,..., M} (measurements)

Ppost (9|0) o< L(Olq)p(q),
with p(q) (prior), L(O|q) (likelihood) and ppost(q|O) (posterior)
Model for the measurement errors:

yi=Ui(q) + e, € =N(0,0?),
Ui(q) is the model prediction of the i-th measurement
Likelihood becomes:

M
mwiﬂmP

i=1
heavily on multiple evaluations of

201.2
Posterior sampled, for instance using Markov Chain Monte Carlo (MCMC), rely

m-wmﬂ.

q— U(q) = (Ui---Un)(q)
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Surrogate model for Bayesian Inference

Substitute costly model U with a surrogate U with inexpensive evaluations
The surrogate-based posterior becomes

M
post (q10) i—(O|Q)P(¢1)

L(0lg) = [ [ exe [— i
Error estimate [Marzouk, Xiu, Najm,

Ui(q)|2
202 '
i=1
@]
KL(ppost|ppost)—// post(q| )

I
Ppost (q|(’))
where

|

M 1/2
Ty Ppost(g]0)dg < C(O) Z Ui = U]
i=1

La(p) ?
0 = [+ lu@Pr(a)da

Motivate for surrogate minimizing ||U; — Uj||1,(p)

2
l[ullz,

PC surrogates (off-line construction)

, Najm]

[Marzouk
P
Ui(@) ~ Ui(a) = ) _[UllaVa(a)
a=1

high convergence rate of the approximation
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The surrogate-based posterior becomes

Substitute costly model U with a surrogate U with inexpensive evaluations

M ~
~ ~ . Yi —
Prosi(al0) o< L(Ola)p(a),  L(Olg) = [ e [—' >
Error estimate [Marzouk, Xiu, Najm,

U".2 '
i=1
9]
KL(FPOSﬁ'Ppost)—// Ppost(q| )

Ppost (q10)

.1

M

1/2
Poostd 2L post(al0)da < C(O) [ Y10 = Gl )
Constant C(QO) can be large if the observations are very informative

i=1

Eppon {10 = 0P} = [+f 104@) = 0@) oot (a10)da
But the posterior is unknown!
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Iterative surrogate construction
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Basic idea:

observations of U

o take new observations of the model to improve the surrogate error (in the

posterior norm)

Denote D = {(¢/, v, p),j=1,...,n} the set of collected model observations:
o ¢/ observation point

o U/ = U(¢) full model evaluation
o p/ > 0 trust index

~ (K
o a sequence of polynomial surrogates U( )(q) incorporating progressively new

RN Ge



Basic idea:

o (k
o a sequence of polynomial surrogates U( )(q) incorporating progressively new

observations of U

o take new observations of the model to improve the surrogate error (in the
posterior norm)

Model construction:

o select a subset Z(K) of model observations indexes

o find the polynomial approximation

P
U(q) ~ UM (q) = > UIEVa(m®(a)),
a=1

o solving a regularized regression problem of type

P 2 P
- i o - ‘
u argumEgPZp U Z\Ila(qf)va +)\Z_%|va|.

JET a=0
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Basic idea:

. ik . . .
o a sequence of polynomial surrogates U( )(q) incorporating progressively new
observations of U
o take new observations of the model to improve the surrogate error (in the
posterior norm)

Resampling: (completing the model observations set)

M

A(k
pl(alo) xexp | D -

2

yi— 0% (q)

20,.2
i=1

p(q)-

o Draw several independent samples ¢ form FA’SL)st

o Compute model prediction U/ = U(¢/)
o Define the trust index of the new observation as

M f A .
o V- 0Rgh2 1
@y =y W LI@E
i=1

max(e¢, AJ)
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ALGORITHM 1: Iterative Procedure for the Construction of the Posterior Fitted Surrogate.

Require: Initial number of observations ng, number of new observations at each step n4q4q, measurements

© XIS TRy

set O, maximal number of model evaluations nyayx

: Initialization:
n=1,D= > Initialize the observations set
: for j=1,...n9 do > Generate the initial observations
Draw ¢" from p(q), D < DU{(g",U(g"),po)}, n ¢ n+1
: end for
k = 0, construct f](o) with ZO) = {1,...,n} > Construct initial surrogate
. while n < ny,,, do
for j =1,...n44q do
Draw ¢" from ﬁsf,)st (ql0) > Sample surrogate-based posterior
Compute U(qg™) and observation weight p™ from (19) > Set observation
D« DU{(g",U(g"),po)}, n+n+1 > Update observation set
end for
ke—k+1
Define Z(¥), construct U ® > Specify observations to use and compute surrogate
: end while
. Return U > Return final surrogate




Simple one-dimensional test problem

Problem settings

v g € R%! and non-polynomial model: U(q) = exp [tanh(q/2)]
v standard Gaussian prior: g ~ p(q) = exp [-¢*/2]/V/2m
v’ single observation O = 2.6, likelihood maximized for g = 3.8

3 T T T T T
25 F E
2 Model U(q) ——— b
p(
15 Observation b

Max Likelihood

v~ for small noise level, 0 < 1, prior and posterior are very distant

v high pol. order N, required to globally approximate U(q) over few std range
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c=0.1
4 T T T 4 T T T
true model —— true model
Surrogates ———
35 Observation ——

true model

rue model

-
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Effect of polynomial degree N, (noise level o = 0.05; sampling \’D(k)|k:1mm =2N,)

Ny =2 No =3

-

&V‘“‘" o = = = 9Dac




MI(/Z

9 (k(x)0u(x)) = —eg,

o Log-normal random field, exponential type covariance

o Retain the first 15 modes: q € RS

log r(x,w) = Y \/Ndi(x)ai(w),  a~ N(O,1).
=1

T T
scaled eigenfunctions

T T T
eigenvalues —+——

M2 o




Mean of Trust index
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Examples

Tterative Surrogate Global Surrogate Error ratio
Nmax (D)) e®) N, | Npc @ No¢ | Npc | € /e
500 (503) | 3.1 1073 2 16 | 941073 4 166 0.33
1000 (1088) | 3.8 10~* 4 166 | 6.8 103 4 166 0.06
2000 (2084) | 3.7 10~ 4 166 | 3.2 1073 6 406 0.11
2500 (2807) | 2.9 10~ 6 406 | 2.71073 6 406 0.11
3000 (3213) | 4.1 107 6 406 | 2.5 1073 6 406 0.16

Table 1: Using No(? = 1, and different Nyax as indicated. o = 0.01.
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Niax = 500

Niax = 2000

Niax = 3000

log:posterior of exact model

lerative method  +
Global method
oy ——

log:posterior of exact model

Herative method  +

Global method

ey ——

Iog-posterior of exact model

Herative method
Global method  *
oy ——

log-posterior of surrogate.

log-posterior o surrogate

logposterior of surogate

Figure 3: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from p(k)

Ppost

(Iterative method) and f)gost (Global method) respectively. Surrogates are constructed with different values
of Nyax, as indicated, and for o = 0,.01, g =0, No©@ =1.
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o =0.01

B

Mean of Trust index
Mean of Trust index

Mean of Trust indox —+—
Surrggate ojder —-—

200 400 600 800 1000 1200 1400 1600

1
200 400 600 800 1000 1200 1400 1600
#

Figure 5: Evolutions of the averaged trust-index for § = 0, Nyyax = 1500, No(©® = 1 and different values for o
as indicated. Also shown are the evolutions of the polynomial order of the successive surrogates (left axis).

Mean of Trust index

200 400 600 800 1000 1200 1400 1600




A=05|A=10| A=20 | N, | Npc
k) 2710° 751076 [3110°% | 4 | 166
e“ 21102761073 | 281072 | 6 | 406
e® /e 11131072 1 9.9107* [ 1.1 1074 | - -

Table 3: Using No(© = 2, Npax = 1500, ¢ = 0.001.
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=20

log-posterior of exact model

log-posterior of exact model

Merative method  +
‘Global method Global

Merative method  +
method

Iog-posterior of exact model

log-posterior of surrogate

log-posterior of surogate

log-posterior of surogate

Figure 6: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from

~(k
pl()o)st

(Iterative method) and ﬁg"ost (Global method) respectively. Case of construction with Ny = 1500, for
qg=0, NO(O) =1 and different ¢ as indicated.

[OLM & D. Lucor.
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Selection of Observation: an example
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o Flow of debris (mud, gravels, small rocks, ...)

o Empirical / Phenomenological models

o Parameter calibration on experiments at USGS

Governing equations

oh  a(hu)  A(hv)

ot Oz oy o

P+ i) g 030 S KA
a(ahtv) a(g;w) N gy(hﬁ) + Kaay(o.sgzhz) + h(1 - K)%I;b =
B(gn) N B(fg;m) o ‘9(21;”1) = pu,

o, Ok Obw)  Op | Oh  Ohu Opy
a o TN or ar oy " Xay "y T

GeoClaw

25

¥35




o Flow of debris (mud, gravels, small rocks,

o Empirical / Phenomenological models

)

o Parameter calibration on experiments at USGS
Non-linear source terms

o (p—pg) =

2k
= TW(M’ — prgzh),
— —2k Ts,x T T,
2 = hg, + uwr(m — prgzh) — M
p g
_ (p—py) =2k (Tsy + Try)
3 = hg, +v7p T (P — prg=h) Ea—
_ 2k Ps
pa= o (py = prg=h)m Py

where

3
95 = (o (90 = prgah) — — [l tan(s),

_ 9= (P — py)
2ah

a
4p » 8BS

m(pg=h —py + 00)

[Iverson & George, 2014]
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Inference of model parameters [Iverson & George, 2014]

static critical-state solid volume fraction (mcyit)

initial hydraulic permeability ko

°
°

o pure-fluid viscosity u

o steady friction contact angle ¢
°

compressibility constant a.

Gate release experiments: available measurements




A priori range of model parameters

Merie ~ %[0.62,0.66],
[t ~ 0g[0.005,0.05],

a~ %[0.01,0.05).

ko ~ iog[107°,1078],
¢ ~ %1[0.62,0.66],

A priori analyis

08 02 0.2
06 015 015
7*: o4 %‘: 0.1 —E 0.1
- k- E|
g 02 H z
2 < 005 2 0.05
o
0 o
0.2
5 10 15 s 10 15 5 10 15 20
t t t
(a) z=2m (b) 2=32m (¢) 2 =66 m
= & = = =




Naive model: Gaussian likelihood

L(d|§) =

iy 2

exp

Independent / uncorrelated ''measurement noise'

0.2
——obs
M original
0.15 I smooth

0.1

0.05

0.07

o
o
=3

o
1=}
a

normalized marginal pdf

0 0.2

0.4 0.6
canonical values

0.8 1
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Trying to fit "important characteristics"

204rr

In(£(dlg)) o — (t ~ an(€)

_ (tdec - alec(g)

20dec

0.2

obs

{ Ml scaling

o
o
©

normalized marginal pdf

o
o
o

o




With feedback from experimentalist

Measurements were synchronized:

I(L(dE)) ox — (Tg”’ =

— 2 — 2
Tgrw(&) > _ (Tdec - Tdec(g) ) _ (
20 Tarw

20740,

20

max

~ 2
hmax - hmu(£)>

15

5
(b) = =32m

(c) = = 66m




With feedback from experimentalist

Measurements were synchronized:

In(£(d|§)) oc —

Tgrw — Tgrw (€) Taee — Tacc(€)

hmax — Emax (ﬁ)

arw 20Ty,

marginal pdf

0 0.2 0.4 0.6 0.8 1
canonical values

20

max
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Selection of Observation: an example

What did we learn?
o Experimental data may be biased
o Raw measurements, or complete description of their treatments, are important
o Using all the available data may be counterproductive (yes!)

o If the model is poor, we should focus on basic features of interest, and not insist
on obtaining global agreement

o Models of model error are more robust and easier to propose & test for simple
features

How to select / reduce the experimental data to facilitate the inference problem?

[Navarro, OLM, Mandli, George, Hoteit and Knio. Comp. Geosciences, in press.]
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Optimal Reduction of Observations
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Reduction of observations

Motivation
Bayesian inference in the case of overabundant data
o Weather forecasting

o Seismic wave inversion

Goal

Compute an optimal approximation
minZ (P(Q| Y =y),P(Q| W =VTy))
o £ a loss function

o n (random) observations Y = (Y;)!_,;

o q parameters Q = (Qi)?:i, Ng < n
o r dimensional reduced space V € R"%", r < n

@]

OLM, Hoteit and Knio. Comp. Stat. & Data An., sub.]
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Gaussian model

Y =BQ+E,
o Observations: Y ~ N (my, Cy) with values in R”
o Parameter of interest: @ ~ N (mg, Cg) with values in RN9
o Noise: E ~ N(mg, Cg) with values in R”
o Design matrix: B € R"*Na

o Forward model: A(Q) = BQ ~ N(ma, Ca), and Cag = Cov(A(Q), Q)

Reduced model
W=V"BQ+ VTE,
o Reduced observations: W ~ N (myy, Cy/) with values in R”
o Reduced space: V € R"%"

RN Ge



knowing the realization (a particular measurement) y of Y

Unreduced case

The posterior distribution is P(Q | Y = y) ~ N(m, Cs) where

— -1
Co = Co (Co+ CagCr'Can) ~ Cos
my = C}QC;I(y — mg) + C*CalmQ.

Reduced model

The posterior distribution is P(Q | W = VTy) ~ N(my, Cy) where

—1
-1
Cv=Co <CQ +ChV (vTcEv) vTcAQ> Co,

my = CIQV(VTCY V)_IVT(y — mE) + CVC(SlmQ.

G @D
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Proposition (Invariance property)

For all invertible matrices M € RL*", we have

myypy = my and CVM = Cv.

o Posterior distribution invariant under rescaling, rotation or permutation of the
observations

o Newton method can not be directly used

o range(V) is more important than V

o Use of a Riemannian trust region algorithm on the Grassmann manifolds Gr(r, n),
the set of r-dimensional subspaces of R" (see Absil et al. 2007, Manopt and
Pymanopt libraries)
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Kullback-Leibler divergence

Given two distributions P(Zp) and P(Z;) with densities fz, and fz,,

DKL (P(Zo) || P(Zl)) = ]EZO (|Og %) o

o Quantify the “information lost when [P(Z;)] is used to approximate [P(Zp)]”
(Burnham and Anderson, 2003)

o Positive and null iff P(Zy) = P(Z1)
o Asymmetric quantity




Reduction of observations

Kullback-Leibler divergence minimization

i D P Y = P w=vT
[V]ggrrzr,n) KL ( (Q| y) I P(Q] «V))

o Closed form of the functional available

o A solution to the optimization problem exists
o A posteriori reduction (measurement available)
Expected Kullback-Leibler divergence minimization
min By (Dkr, (P(Q|Y) | P(Q|W=VTY
i Ey (Diw (P(@ 1Y) Il P(Q )

o Closed form of the functional available

o A solution to the optimization problem exists
o A priori reduction

RN Ge




Given random variables Z, Zy, and Z3,
Entropy

With Z ~ P(Z),

H(Z) = Ez(~log(fz(Z2))).
o Amount of information contained by P(Z)

Mutual information

With Zp ~ P(Zo) and Z; ~ P(Zl),

(2o, Z1) = H(Z) + H(Z1) —H(Z, Z1),

o Amount of information that P(Zp) contains about P(Z;)
o Symmetric quantity

G @D
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Reduction of observations

Theorem (Mutual information maximization)

We have
r
1
max Z(W,Q) = % Z log Aj,
i=1

VERrR™X"
where (X\;)[_, are the r dominant eigenvalues of the problem
Cyv=MACgv, MER, veR"

A solution to the optimization problem is given by the matrix V with columns being
eigenvectors (v;)!_, associated to the eigenvalues (X\;)!_;. (Error estimator)

Equivalences
The mutual information maximization is equivalent to:

o the maximization of the expected information gain
max Ew (Dxr (P(QIW) || P(Q)))
VERZXr

o the minimization of the entropy of the posterior distribution
min H (P(QW = VTy))

VER]X"




Synthetic data

For (t;)7_;, n =500, a uniformly drawn sample in (—1,1),

Yeer(ti) = Aver(ti) + E(ti), Vi€ {l,...,n},
with Apes ~ N(mrefv Cref) and E ~ N(mEv CE)'

Model

Nqg-—-1

j=0
with T; the Chebyshev polynomial of order j and Nq = 30.

G @D

Yi= Y T)Q+E(), Viefl...n},
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X Observations
—S— MAP estimate
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Reduction of observations

Synthetic data

Given two random samples (s;)7_; and (t;)]_; being independent and uniformly
distributed in (—1, 1), with n = 2000,

Yief(Si, ti) = exp(Fref(si, ti)) + E(si, ti),
where Fief ~ N(O: Ceef), E ~ N(07 Cg).

Vie{l,...,n},

Model

Y = Ai(Q) + E(si, ti),

vVied{l,...,n},
where A;(Q) = exp((BQ)i), @ ~ N(0, Cg), and g = 30.
o Columns of B: dominant eigenvectors of C.f
o Cg = diag(\1, ..., Aq): dominant eigenvalues of Cef
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Ly error on MAP point (left) and Frobenius error on Hessian at MAP.
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Reduction of observations

The model:

-1, H?(X S Q,’) = Kj,

V (s(x)VU(x))
32,000 points with Gaussian noise.

where log k; ~ N(0,1). Observed at n =
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Dominant modes of the projection:
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The model:

V (x(x)VU(x))
where log kj ~ N(0,1). Observed at n

/€(X (S Q,‘) = Kij,
32,000 points with Gaussian noise.
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(@ Conclusions and outlooks
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Summary

o Reduction approaches are instrumental in UQ and inference
o May concern both the model and the observations
o Reduction strategies should be goal-oriented

o Information theoretic reduction approaches are promising

Outlooks

o Selection of observation features for Bayesian inference

o Goal-oriented design of model reduction and experiments

Thank you
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